Generalized Multilevel Functional-on-Scalar Regression and Principal Component Analysis
نویسندگان
چکیده
This manuscript considers regression models for generalized, multilevel functional responses: functions are generalized in that they follow an exponential family distribution and multilevel in that they are clustered within groups or subjects. This data structure is increasingly common across scientific domains and is exemplified by our motivating example, in which binary curves indicating physical activity or inactivity are observed for nearly six hundred subjects over five days. We use a generalized linear model to incorporate scalar covariates into the mean structure, and decompose subject-specific and subjectday-specific deviations using multilevel functional principal components analysis. Thus, functional fixed effects are estimated while accounting for within-function and within-subject correlations, and major directions of variability within and between subjects are identified. Fixed effect coefficient functions and principal component basis functions are estimated using penalized splines; model parameters are estimated in a Bayesian framework using Stan, a programming language that implements a Hamiltonian Monte Carlo sampler. Simulations designed to mimic the application indicate good estimation accuracy and inference with reasonable computation times for moderate datasets, in both cross-sectional and multilevel scenarios; code is publicly available. In the application we identify effects of age and BMI on the time-specific change in probability of being active over a twenty-four hour period; in addition, the principal components analysis identifies the patterns of activity that distinguish subjects and days within subjects.
منابع مشابه
Generalized multilevel function-on-scalar regression and principal component analysis.
This manuscript considers regression models for generalized, multilevel functional responses: functions are generalized in that they follow an exponential family distribution and multilevel in that they are clustered within groups or subjects. This data structure is increasingly common across scientific domains and is exemplified by our motivating example, in which binary curves indicating phys...
متن کاملSelection Model in Functional Linear Regression Models for Scalar Response
The so-called Functional Linear Regression model consists in explaining a scalar response by a regressor which is a random function observed on a compact subset of R: in this context, the “parameter” of linear model is a function of the weights. In order to estimate this functional coefficient some estimators such as Functional Principal Component Regression Estimator, Smooth Principal Componen...
متن کاملFunctional Adaptive Model Estimation
In this article we are interested in modeling the relationship between a scalar, Y , and a functional predictor, X(t). We introduce a highly flexible approach called ”Functional Adaptive Model Estimation” (FAME) which extends generalized linear models (GLM), generalized additive models (GAM) and projection pursuit regression (PPR) to handle functional predictors. The FAME approach can model any...
متن کاملLongitudinal Scalar-on-Function Regression with Application to Tractography Data
We propose a class of estimation techniques for scalar-on-function regression in longitudinal studies where both outcomes, such as test results on motor functions, and functional predictors, such as brain images, may be observed at multiple visits. Our methods are motivated by a longitudinal brain diffusion tensor imaging (DTI) tractography study. One of the primary goals of the study is to eva...
متن کاملFunctional generalized linear models with images as predictors.
Functional principal component regression (FPCR) is a promising new method for regressing scalar outcomes on functional predictors. In this article, we present a theoretical justification for the use of principal components in functional regression. FPCR is then extended in two directions: from linear to the generalized linear modeling, and from univariate signal predictors to high-resolution i...
متن کامل